

Schuleigener Arbeitsplan Physik für die Jahrgangsstufe 10 (2 std. / ganzjährig)

Gültigkeit: ab dem Schuljahr 2017/18 Grundlage: Konferenzbeschluss vom 26.09.2017

Zweistündig, ganzjährig Universum Physik 9/10 , Cornelsen 978-306-420091-3 Pro Halbjahr wird jeweils eine einstündige Klassenarbeit geschrieben Unterrichtsumfang: Bewertung: Schulbuch:

Dies gilt auch dann, wenn der Unterricht einstündig erteilt wird. Gewichtung: schriftliche Leistung: 40% / sonetige Leistungen: 60%

Gewichtung: schriftliche Leistung: 40% / sonstige Leistungen: 60%		
Themen / Inhalte / Fachwissen	Kompetenzen (gemäß Kerncurriculum) E: Erkenntnisgewinnung, K: Kommunikation, B: Bewertung	 Verbindlicher Beitrag zum Methoden- und Medienkonzept weitere Hinweise / Bemerkungen
1. Leitungsvorgänge in Metallen und Halbleitern		
 Unterschiedliches Leitungsverhalten von Leitern und Halbleitern (Beschreibung mit geeigneten Modellen) Darstellung der Vorgänge am pn-Übergang mithilfe geeigneter energetischer Betrachtungen. 	E1: Experimente zur Leitfähigkeit von LDR und NTC E2: Aufnahme einer Kennlinie einer Diode (inkl. sachgerechter Dokumentation, Verwendung einer Modellvorstellung als Hilfsmittel zur Klärung der Vorgänge, Unterscheidung zwischen Modellvorstellung und Realität)	Schaltungen mit Dioden
 Energetische Betrachtung der Vorgänge in Leuchtdioden und Solarzellen. 	K1: Beschreibung von Aufbau und Wirkungsweise von LED und Solarzelle B1: Bewertung der Verwendung von LEDs und Solarzellen unter physikalischen, ökonomischen und ökologischen Aspekten	Evtl. Photovoltaikanlage Schuldach Experimente Solarkoffer
Alltagsbedeutsame Unterschiede von Gleich- und Wechselstrom	E3: Erläuterung der gleichrichtenden Wirkung einer Diode B2: Klärung der Bedeutung der Halbleiter	Funktionsgeneratoren / Oszilloskop
2. Radioaktivität	für die moderne Technik	
 Kern-Hülle-Modell des Atoms und der Atomkern Stabilität von Kernen aufgrund der Kernkraft Isotope 		

Themen / Inhalte / Fachwissen	Kompetenzen (gemäß Kerncurriculum) E: Erkenntnisgewinnung, K: Kommunikation, B: Bewertung	 Verbindlicher Beitrag zum Methoden- und Medienkonzept weitere Hinweise / Bemerkungen
 Kernstrahlung: Ionisierende Wirkung von Kernstrahlung unter Verwendung des Kern-Hülle-Modells und stochastischer Charakter von Kernstrahlung Aufbau und die Wirkungsweise eines Geiger-Müller-Zählrohrs natürliche und künstliche Strahlungsquellen Kernprozesse: Modellhafte Entstehung von α-, β-, γ-Strahlung Untersuchung des Durchdringungsvermögens von α-, β-, γ-Strahlung Beschreibung des radioaktiven Zerfall eines Stoffes unter Verwendung des Begriffes Halbwertszeit. Abschätzung von Gefährdungspotenzial von α-, β-, γ-Strahlung und Strahlenschutzmaßnahmen 	E4: Grafische Darstellung einer Abklingkurve E5/B3: Biologische Wirkung von α-, β-, γ- Strahlung und ausgewählte medizinische Anwendungen E6: Beschreibung der Ähnlichkeit von UV-, Röntgen- und Gammastrahlung sowie sichtbarem Licht und Klärung der Unterschiede hinsichtlich der biologischen Wirkung	Bierschaum-Versuch Würfel-Simulation Evtl. Abstandsgesetz-Ananlogie
 Unterscheiden Energiedosis und Äquivalentdosis, Einheit und typische Größenordnungen der Äquivalentdosis Kernspaltung und die Kettenreaktion zur Energiegewinnung in Kernkraftwerken 	B4: Aufzeigen der Grenzen physikalische Sichtweisen am Beispiel des Bewertungsfaktors B5: Auswirkung der Entdeckung der Kernspaltung im gesellschaftlichen Zusammenhang, dabei Diskussion der Grenzen physikalisch begründbarer Entscheidungen B6: Stellungnahme zur Problematik des radioaktiven Abfalls (Argumentation anhand bisheriger Kenntnisse über Halbwertszeit etc.) K2: Recherche in geeigneten Quellen und adressatengerechte Präsentation	

3. Druck, Gasgesetze und Kreisprozesse

- Modellhafte Beschreibung des Gasdrucks als Zustandsgröße und Definitionsgleichung des Drucks.
- Verwendung der Einheit des Drucks (1 Pa) und Angabe typischer Größenordnungen
- Verhalten idealer Gase mit den Gesetzen von Boyle-Mariotte und Gay-Lussac
- Einführung der Kelvin-Skala und Erläuterung deren Zweckmäßigkeit
- Funktionsweise eines Stirlingmotors.
- Idealer stirlingscher Kreisprozess im V-p-Diagramm.
- Erläuterung der Existenz und der Größenordnung eines maximal möglichen thermodynamischen Wirkungsgrades auf der Grundlage der Kenntnisse über den stirlingschen Kreisprozess.
- Angabe der Gleichung für den maximal möglichen Wirkungsgrad einer thermodynamischen Maschine an.

E7: Verwendung des Teilchenmodells zur Beschreibung des Gasdrucks K3: Sachgerechte Beschreibung von Alltagserfahrungen im Zusammenhang mit Druck

E8: Auswertung von Messdaten durch geeignete Mathematisierung und Beurteilung der Gültigkeit der Gesetze (inkl. Sachgerechter Dokumentation)

E9: Interpretation von einfachen Arbeitsdiagrammen und energetische Deutung eingeschlossener Flächen

E10: Erläuterung der Energieentwertung und der Unmöglichkeit eines "Perpetuum mobiles"

B7: Begründete Stellungnahme zu Möglichkeiten nachhaltiger Energienutzung am Beispiel der "Kraft-Wärme-Kopllung" inkl. quantitativer Abschätzung

Möglichkeiten für die Zusammenarbeit mit anderen Fächern

Basisziele laut Fachkonferenz: